
36 The Delphi Magazine Issue 66

Beating The System:
IDE Secrets, Part 2
by Dave Jewell

A couple of months back, I dis-
cussed the internals of

Borland’s undocumented DSNIDE50
package, and explained how it is
possible to use this package to
make better add-in experts and
wizards for the Delphi IDE. After
having written this particular arti-
cle, I was feeling quite disgustingly
pleased with myself, whereupon I
made the fatal mistake of searching
the net to satisfy myself that
nobody else had written on this
particular topic.

Well, it turns out that somebody
has, no less a person than Allen
Bauer, Staff Engineer and
Delphi/C++Builder R&D Manager!
Naturally, I came down to earth
with a bump. But having picked
myself off the floor and read
through what the great man had to
say, I ended up feeling a lot better.
To begin with, Allen is constrained
by company policy regarding what
aspects of DSNIDE50 he discusses,
and what he keeps secret, whereas
we have no such restrictions [Err,
apart from the lawyers, Dave... Ed].
Also, Allen doesn’t seem to be in
any big hurry to acquaint people
with the delights of DSNIDE50 (his
last article was written back in
March 2000) and if my own investi-
gations spur him on to reveal more
of the goodies contained therein,
then so much the better. You can
download Allen’s articles, and
associated source code, from the
Borland Community website at
http://community.borland.com.

Fooling The IDE
Typically, a Delphi programmer
will use form inheritance to create
a descendant of an existing form,
where the ancestor form is con-
tained within the same project.
However, if you make extensive
use of project groups, you will
most likely have already noticed
that the IDE can search for the

ancestor form not only within the
current project, but also within any
other projects in the group. In his
articles, Allen cunningly exploits
this behaviour in order to fool the
IDE into instantiating a form that’s
descended from one of the form
classes inside the DSNIDE50 pack-
age. As before, I’m assuming that
we’re using Delphi 5 here: presum-
ably, Delphi 6 will ship with
DSNIDE60.

Once you’ve fooled the IDE in
this way, you’ll be able to see your
new form within the Delphi form
designer, and add additional con-
trols, change properties, etc, in the
usual way. In the previous article, I
mentioned that CodeRush already
gives you this sort of functionality
and postulated that CodeRush was
already making extensive use of
the code inside DSNIDE50. After
some recent email discussions
with Mark Miller (the creator of
CodeRush), it turns out that part of
the reason why Borland decided to
start shipping DSNIDEXX.DCP with
Delphi is because of Mark’s insis-
tence on this point. So well done
that man!

If you checked out the code
from Issue 64 (in particular
DUMMYFORM.PAS), you will have
noticed the way in which I create
controls on the fly inside the form’s
OnCreate event handler. Again, this
restriction is analogous to the
way in which users of early
CodeRush imple-
mentations were
forced to explicitly
create controls at
runtime, rather
than making use of
the form designer.
Being able to use
the form designer is
obviously the pre-
ferred Delphi way
of doing things, and
therefore, in this

next section, I’m going to walk you
through the process of creating a
DSNIDE50 form descendant within
the IDE’s form designer using the
technique described by Allen
Bauer.

This technique is necessarily
somewhat convoluted (some
might say, arcane) but I’ll try and
explain the rationale behind what
we’re doing along the way. To
begin with, you’ll need to down-
load the .ZIP file associated with
Allen’s tutorial from Borland Code
Central. What you’re after is a file
with the rather uninformative
name of 14529.ZIP. This contains a
set of stubbed-out form units along
with their .DFM files. You’ll find
names such as DeskForm.pas,
DockToolForm.pas, and so forth.
Having read the previous article,
these unit names should be some-
what familiar to you. We need
these files in order to convince the
IDE that the ancestor form class is
actually contained within our pro-
ject group, even though, in reality,
the real implementation of the
ancestor classes resides inside the
DSNIDE50 package.

When you browse these files,
you’ll discover that Allen has
rather generously left a lot more of
the implementation code inside
them than was strictly necessary,
thus providing some fascinating
insights into the inner workings of
the IDE. The fact that these files
have been made available by

➤ Figure 1: Using Allen Bauer's
technique for fooling the IDE,
it's possible to make use of
form inheritance to load
descendants of the various
IDE docking form classes into
the form designer.

February 2001 The Delphi Magazine 37

Borland is very good news for me,
because I’d been planning to do
something similar, but was wor-
ried about falling foul of Borland’s
lawyers and didn’t want to provide
any more of my own ‘decompiled’
findings than was strictly neces-
sary in order to make this tech-
nique work. Happily, Allen’s files
solve the problem and give us a few
extra little gems along the way.

Once you’ve unzipped 14529.ZIP
into a directory of your choosing,
you can fire up the Delphi IDE and
open the DUMMYDOCKPROJ.DPR
project which Allen supplies. As
you’ll see, this includes the various
stubbed-out units mentioned ear-
lier. If you try and build this project
immediately after a fresh installa-
tion of the Delphi IDE, the build will
probably fail, with the compiler
complaining that it can’t find
DSGINTF, which is referenced from
some of the supplied units. In any
event, it’s not really necessary that
this project should be built, the
important thing is simply to
include it in the same project
group as the Delphi expert project
that you’re working on.

The next step is therefore to
right-click on the project group
name and choose Add New Pro-
ject... from the resulting context
menu. When asked what type of
project you want, you should
select Package in the usual way
because we’re obviously in the
business of creating a Delphi

add-in. I’ll refer to this specifically
as the expert project, while the
Borland-supplied files constitute
the dummy project. The real trick
is to create the DSNIDE50 descen-
dant in the dummy project, using
the stub units provided for the pur-
pose. It can then be sneakily
copied over to the expert project,
replacing the stub units with a ref-
erence to the DSNIDE50 package at
the same time. Here’s how to do it.

First, make sure that the dummy
project is the active project and
then select New... from the File
menu. If you’ve used form inheri-
tance in the past, you’ll know that
the New Item dialog automatically
adds a tab which is named accord-
ing to the project, and all the cur-
rently defined forms sit on that
dialog tab, waiting to be inherited
from. Sure enough, if you go to the
DummDockProj tab of the dialog,
you’ll find four form classes await-
ing your pleasure: see Figure 1.
These are: BaseDockHostForm,
DesktopForm, DockableForm and
DockableToolbarForm.

As I mentioned last month, the
final form class, DockableToolbar-
Form, is used to create a dockable
form that includes an integral,
resizable toolbar such as the pack-
age manager window or the project
manager. If you don’t need this
facility, it makes sense to inherit
from DockableFormmost of the time.

So let’s say you’ve created a new
DockableForm descendant, naming
the new form as ToolForm, and the
form unit as TestDock.pas (for the
sake of argument). Next, swap over
to the expert project, making it the
active project. In the usual way,
add the form unit that you’ve just
created to the expert project and
then remove it from the dummy
project. Finally, in the package
manager window, right-click on the

Requires tree node
(as I showed you
last time) and add a
reference to the
DSNIDE50.DCP file.
Using this tech-
nique, we have
‘grafted’ the req-
uired form unit into
the expert project
and told the IDE

where to find the real implementa-
tion of the ancestor class that we
used. Obviously, you’ll also need
to designate your expert project as
being a design-time only package,
and you’ll want to add code similar
to that in Listing 1, in order to
ensure that the expert form is cre-
ated and deleted as appropriate.
(Be sure to reference the Register
routine from the interface part of
your unit!)

Figure 2 shows the result of
using the above techniques on a
derivative of DockableToolbarForm.
As you can see, the integral
toolbar, splitter and assorted
other components are all visible in
the normal way, and you can add
your own custom controls using
the form designer. Similarly,
Figure 3 shows what happens
when we build the expert project
and then double-click the
DSNIDE50.DCP file under the
Requires node of the package
editor window. This opens
another instance of the package
editor, and we get treated to a full
blow-by-blow list of all the units
contained inside this package. As
you can see, we have barely
scratched the surface of the
various units that are available!

To Boldly Go
So what other creepy-crawlies are
lurking undiscovered inside
DSNIDE50? There are a few tools
around which will pick open a .DCP
or .DCU file and give a fair repre-
sentation of the Pascal source con-
tained therein, or at least the
interface part of it! (Well, what do
you think this is, Christmas?) How-
ever, for our purposes, an even
more direct approach is possible.
If you follow the above steps to
create an expert project which
uses the DSNIDE50 unit and then

procedure Register;
begin
if ToolForm = nil then
ToolForm := TToolForm.Create(
Application);

ToolForm.Show;
end;
initialization
finalization
ToolForm.Free;

end.

➤ Listing 1

➤ Figure 2: And here's the
proof of the pudding, a live
dockable toolbar form which
we can manipulate inside the
form designer just as if it was
a regular Delphi form. As with
any other example of form
inheritance, you can't delete
the inherited bits!

38 The Delphi Magazine Issue 66

build the project, you’ll have
essentially injected the contents of
DSNIDE50 into the symbol space of
the project. Or, to put things differ-
ently, once you’ve built the pack-
age, you can use the IDE’s built-in
Object Browser to browse DSNIDE50
to your heart’s content. For maxi-
mum amusement value, right-click
the Object Browser window, select
Properties and be sure that the
Show Declaration Syntax checkbox
is checked. With the Browser in
‘Units’ mode, you should then see
something like Figure 4. In this
particular case, we’re looking at
the interface declaration for
TDockableForm.

Referring back to the
Borland-supplied 14529.ZIP file,
Allen Bauer only gave us the inter-
face declarations for the units and
classes that were relevant to his
tutorial on dockable IDE windows.
However, using the Object
Browser, we can effectively exam-
ine everything that is exported
from the DSNIDE50 package! Now,
admittedly, you won’t see a partic-
ular unit unless that unit is
referenced from the current pro-
ject and the package rebuilt, but
that’s easy enough to do. And if you
need a list of all the units contained
inside the package, just look back
to Figure 3.

As you pick your way through
this little lot, you will find a number
of units with rather intriguing

names. For example, there are no
less than nine different units
whose names are prefixed by
Model: ModelCaps, ModelClasses,
ModelControl, ModelDesigner,
ModelFactories, ModelPrimitives,
ModelTypes, ModelUtils and
ModelViews. Phew! So what’s all
that lot, then? Much of the code
inside DSNIDE50 is actually con-
cerned with the implementation of
the Data Module Designer, and
that’s basically what these nine
units are about. The same is true of
DMDesigner, DMStrs, and all the units
whose names are prefixed by
DataModel.

Another interesting unit is
IDEMessages. This unit defines a
whole host of internal IDE mes-
sages, which could potentially be
very useful for those who have
come up against the limitations of
the published Open Tools archi-
tecture. Here’s a small snippet
taken from this file (you can use
the Browser to get the full picture):

IDEM_StartCompile = 1295;

CM_CompleteChangeProperty = 5125;

CM_UpdateInspector = 5127;

PicEdit and StrEdit are of course
the built-in property editors for the
picture and string classes. Don’t
waste time trying to reverse engi-
neer these units because Borland
have been providing us with the
source for some time. With a stan-
dard installation, the source code
is at C:\Program Files\Borland\
Delphi5\Source\Property Editors.
Similarly, ColnEdit is the standard
collection editor used by TList-
View. Again, Borland already pro-
vide us with full source.

Even so, it is likely that most bud-
ding expert writers will want to

focus on the
various units
and classes
that I intro-
duced a couple
of months ago.
With this in
mind, let’s
revisit some of
those topics,
taking a more
detailed look
than before. As

should be clear by now, most of
your experts will be descendants
of TDockableForm, so let’s concen-
trate on that class, because it’s
central to the whole IDE implemen-
tation of dockable windows.

Delving Into Docking Details
As you’ll no doubt appreciate, the
IDE permits two different forms of
docking: a window can be docked
up against another window, or else
it can be dropped onto another
window, thus creating a sort of
nested arrangement whereby tabs
are used to select between the dif-
ferent windows. The former possi-
bility is referred to as a joined
dock, and the latter as a tabbed
dock.

Thus, if you peruse the various
units in DSNIDE50, you’ll find two

➤ Figure 3: Here are all the
units inside DSNIDE50.

➤ Figure 4: Once you've built
your add-in expert, you can
use the browser to examine
the interface part of any of
the units that are referenced
from your project. In this case,
we're looking at the interface
definition for TDockableForm.

40 The Delphi Magazine Issue 66

units called JoinDock and TabDock
which correspond to these two
possibilities. The JoinDock unit
implements a descendant of TDock-
ableForm called TJoinDockForm, and
the TabDock unit implements
another TDockableForm descendant
called TTabDockHostForm. Thus, the
arrangement is something like that
shown in Figure 5.

Notice the phrase ‘host’ in
TBaseDockHostForm and TTabDock
HostForm. Strictly speaking, the
TJoinDockForm should likewise be
called TJoinDockHostForm, but
Borland weren’t as consistent as
they should have been here. You’ll
just have to imagine the ‘host’ in
this particular case! The key point
is that the bottom two classes (in
Figure 5) are ‘container’ windows
which contain any IDE forms that
are docked into them. To make this
clearer, let’s suppose, for the sake
of argument, that you have two
dockable forms, the Object Inspec-
tor and the Project Manager which
are both linked together with a
joined dock. In this particular case,
the IDE will automatically create a
window of class TJoinDockForm, and
the two aforementioned IDE win-
dows will both be regarded as dock
clients within this enclosing
window.

When you grab one of the
docked forms and drag it away
from the containing window, the

code inside TJoinDockForm.Form-
UnDock looks to see if the current
DockClientCount is equal to two, in
other words, if there are currently
only two windows in the ‘join’. If so,
we know that it’s time to kiss good-
bye to the enclosing TJoinDockForm
window! Accordingly, the code
posts a special UM_FinalUnDock
message back to the enclosing
window, this is one of the internal
IDE messages that I mentioned ear-
lier as being defined inside
IDEMessages.Pas. The UM_Final-
UnDock message gets fielded inside
the TBaseDockHostForm.UMFinal-
Undock message handler where the
containing window is first hidden
to prevent flicker, the last remain-
ing dock client is ‘floated off’ via a
call to TControl.ManualFloat and
finally the containing window com-
mits suicide by calling Release on
itself! The net effect is that the last
remaining dock client is freed from
captivity, with the containing
window silently exiting stage left.

The same sort of thing happens
with a tabbed dock. In this case, of
course, the containing window is
an object of class TTabDockHostForm
which implements some additional
goodies such as a special popup
menu that only ever appears when
you right-click on the tabs them-
selves, this allows the tabs to be
repositioned to any of the four
edges of the containing window.
There’s also a property, DockPage,
which provides access to a private
field of type TTabDockPageControl.
This is a specialised descendant of
the familiar TPageControl compo-
nent, implemented in the
IDEDockCtrls unit. Inside the imple-
mentation of TTabDockPageControl,
the DoRemoveDockClient method
tests to see if the page count has

dropped down to one. If so,
it fires off a UM_FinalUnDock
message to its parent
window, the TTabDockHost-
FormObject. The most
important aspect of this ele-
gant architecture is the fact
that both the ‘container’
classes, TJoinDockForm and
TTabDockHostForm, are them-
selves derived from
TDockableForm, and can
therefore be docked to one

another, or with another ‘stand-
alone’ dockable form.

The thing that rather irritates
me about all this is the fact that
Borland have never made these
routines available to ordinary
Delphi developers, despite the fact
that many programmers are
understandably keen to emulate
the same dual-mode (join and tab)
docking system that’s used by the
IDE. Why have Borland never made
this stuff available? Why isn’t it
part of the VCL component
library? What’s the big deal?
Maybe in Delphi 6?

There’s a lot more that could be
said about DSNIDE50, but I think I’ll
leave things there for now. In a
future article, perhaps we’ll
explore the way in which a
dockable form can persistently
save its state using the TMemIniFile
argument, which is used within the
IDE to store desktop information.
Or maybe I’ll go mad and present
the full source code for the IDE’s
dual-mode docking system? Per-
haps if Borland are too busy play-
ing with Kylix, they won’t notice.�

Incidentally, if you’re serious
about building Delphi add-in
experts, I’d definitely encourage
you to get a copy of CodeRush
from www.eagle-software.com,
the latest version of which is 5.03h.
This isn’t to suggest that you
always create CodeRush experts
(ie packages that are written for,
and depend upon CodeRush API),
but whether you go down this
route or create ‘native’ experts,
you’ll generally find that
CodeRush brings a big productiv-
ity boost to your development
work. In addition to that, the
add-ins that come with CodeRush
are themselves fascinating exam-
ples of just what can be done when
you get into a sufficiently intimate
relationship with the IDE internals.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level work. You can contact Dave
at TechEditor@itecuk.com

Copyright © 2001 Dave Jewell
All Rights Reserved

➤ Figure 5: The dual-mode
(joined versus tabbed) docking
architecture used by the IDE
accounts for the split in the
road when viewing the class
hierarchy. Most of the clever
stuff happens in
TDockableForm and
TBaseDockHostForm.

	Fooling The IDE
	To Boldly Go
	Delving Into Docking Details

